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The valence of Cu and Au in YBa2Au0.3Cu2.707_ _ was investigated

using x-ray absorption near-edge structure (XANES). X-ray and neutron

diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge

XANES shows that this has little effect on the oxidation state of the

remaining copper. The Au L 3 edge develops a white line feature whose

position lies between that of trivalent gold oxide (Au203) and monovalent

potassium gold cyanide (KAu(CN) 2) and whose height relative to the edge

step is smaller than in the two reference compounds. The appearance of

the Au L3-edge suggests that fewer Au 3d states are involved in forming

the Au-O bond in YBa2Auo.3Cu2.707__ than in trivalent gold oxide.

PACS Nos: 74.70.Vy, 78.70.Dm



Substitution of many metals in YBa2Cu307_ s (abbreviated as 123 in

the following) 1-4 reduces the superconducting transition temperature Tc.

Metals like Fe, Co, or AI replace linear chain site copper, the Cu(1) site,

and depress Tc more slowly than Zn or Ni which replace copper located on

the CuO 2- planes, the Cu(2) site. X-ray absorption near-edge structure

(XANES) studies5, 6 indicate that transition metal substitutions

sometimes change the oxidation state of Cu or oxygen. An apparent

exception to the above generalization is the behavior of Ag and Au.

Considerable amounts of Au or Ag can be put into 123 before Tc begins to

decrease. 7 Streitz et al.8 examined the microstructure of Au/123

composites and found that separate Au and Au-containing 123-like phases

existed after heat treatment in oxygen. Hepp et al.9 and Cieplak et al.l 0

investigated YBa2(AuxCUl_x)3OT_ 6 using x-ray diffractiong,lo and neutron

scatteringlO and found that Au went into the Cu(1) site.

In this communication, we report the results of an examination of

the Cu K and Au L3 x-ray absorption edges for YBa2(AuxCUl_x)307_8

designed to determine the valences of Cu and Au. We find that an Au

substitution of 8 mole percent has no measurable effect on the oxidation

state of Cu in 123 which is divalent. The appearance of the Au L3 edge

suggests that the valence of gold is less in the superconductor than in

trivalent Au20 3.

Samples used in this study were synthesized and characterized at

NASA Lewis Research Center; synthetic details are discussed in

reference 9. For YBa2(Auo.ICUo.9)307_8, x-ray diffraction (XRD) patterns

and x-ray photoemission (XPS) suggest that "trivalent" Au goes into the

Cu(1) site. When this occurs the a and b axes remain unchanged but the c

axis expands from 11.69 to 11.75 A. This is in accord with the well known
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structural chemistry of Au (see reference 9 for relevant discussion). Hepp

et al.9 found no evidence for the presence of secondary phases in their x-

ray data for Au substitutions less than 10 mole percent. The formation of

a second phase was readily detected in the x-ray diffraction data when

more than 10 mole percent was put in 123. Tc was observed to be 89 K for

the 8 mole percent gold containing material and 91 K for the parent 123

material made without Au20 3. It should be emphasized at this point that

the x-ray-based results of Hepp et al. have been confirmed by detailed

neutron diffraction studies, lo

The x-ray absorption measurements were made in the transmission

mode using powdered samples dispersed on adhesive tape. Au or Cu foil

absorbers were placed after the samples to run in conjunction with the

samples to maintain calibrated energy scale. The work was done at the X-

11A beamline at the Brookhaven National Synchrotron Light Source (NSLS).

The technical details of this beamline are published in reference 11. The

resolution of the monochromator is estimated to be --1.0 eV at the Cu k-

edge and ~1.2 eV at the Au L3 edge. The samples were crushed into powder

and screened through 400-mesh before dispersal onto adhesive tape. The

near-edge data for the Cu K and Au L3 edges was obtained and analyzed

using standard procedures. A linear background was removed from the

edge before normalization. Energy calibration of the edge was ensured by

measuring the L 3 edge from a gold foil and the k-edge from a Cu foil

simultaneously with the superconducting samples.

The Cu k-edges for the 123 material (solid line) and the 8 mole

percent Au sample (dashed line) are shown in figure 1. The shape of the Cu

k-edge is complex and several interpretations of it exist. 12-16 XANES

results are now available for highly oriented powders or single crystal
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materials using polarized x-rays and provide the most reliable data for

the Cu k edge. 17-20 The Cu k near edge structure arises from dipole

transitions from the Cu Is core level to the low-lying copper valence or

conduction band states with p or = symmetry and to transitions from the

Cu Is to continuum final states that are modified by multiple scattering

(shape resonances). The transitions to bound final states are related to

the electron density of states and are sensitive to changes in the chemical

state of the Cu while the shape resonances are sensitive to structural

modification. Heald et al. 17 examined the Cu k-edge from 123 powders

oriented such that the x-ray polarization vector _ was either parallel or

perpendicular to the c axis. The position of a weak pre-edge feature

marked "A" due to Is to 3d quadrupole transitions is marked on figure 1

and it is directly related to the valence of the Cu. In oxygen deficient 123

material, this peak grows in proportion to the removal of holes from the

oxygen site and the formation of Cu1+. 21,22 Peak "B" is due to transitions

from the Is to 4p= band accompanied by shake down transitions (4p=*) and

peak "C" contains contributions from the Is to 4p= and Is to 4p(_

transitions from the Cu(2) and the Cu(1) sites, The feature marked "D" is

identified as a shape resonance. Figure 1 shows that the Cu-k edges for

YBa2Cu307_ 8 (solid line) and YBa2(Auo.ICUo.9)307_ 8 (dashed line) are

virtually identical which indicates that Au substitution has little or no

effect on the valence of copper.

The Au L3 edges for YBa2(Auo.ICUo.9)307__, Au foil, monovalent

KAu(CN)2 and trivalent Au20 3 are shown in figure 2. The spectra for the

reference compounds and Au substituted 123 have been normalized to the

edge step of the Au absorption edge. The near-edge structure of the L2 and

L3 edges in 5d transition meia_compounds is _ominated by 2pl/2 to 5d3/2
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and 2P3/2 to 5dl/2 transitions (white line feature). 23 The L3 edge also

has a contribution from the 2P3/2 to 5d3/2 level but it is much weaker

than the 2Pl/2 to 5d3/2 and 2P3/2 to 5dl/2 transitions. The intensity of

the white line feature is thought to provide a good indication of the 5d

occupation. 24 For Au (small dashed curve), the 5d band is filled and no

white line feature is observed. The oxidation of Au to the mono or

trivalent state creates the white line feature. We find that the white line

area is larger for Au20 3 (dot-dashed line) than KAu(CN)2 (dashed line) and

also find that the white line feature shifts to lower photon energy when

the oxidation number increases from 1+ to 3+. It should be noted that the

ratio of the white line areas for Au20 3 and KAu(CN)2 is less than the ratio

of d-electron removal suggested by the valence. The white line area for

Au in 123 (solid line) is considerably smaller than either of the reference

compounds and lies at lower photon energy than KAu(CN)2 but at a higher

photon energy than Au203.

The Au L3 near edge data for YBa2(Auo. 10u0.9)307_ 5 suggests that the

valence of Au in the 123 material differs from that of Au in trivalent

Au20 3. Iron also replaces Cu on the chain site and is trivalent. However,

the substitution of 8 mole percent Fe depresses Tc by 55 K25 rather than

the 2 K found for the equivalent gold substitution. Yang et al. 5 found that

Fe substitution modifies the O k-edge and reduces the number of 2p holes

on the oxygen. We suggest, based on the reduction in the apparent number

of unoccupied Au 5d states for the Au-O bond in 123, when compared to

Au20 3 and the small Au-induced change in T c, that little or no change
i

occurs in the number of the oxygen 2p holes. This is supported by our data

for the Cu k-edge which shows no change in the Cu-O bonding like that

observed when the high T c material becomes oxygen deficient and holes
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are removed from the oxygen site. 21

The near-edge data suggests that small amounts of Au incorporated

in 123 at the Cu(1) have less 5d involvement in the Au-O bond in the

superconductor than in Au20 3. We believe this is related to the doping of

the oxygen site with holes. Gold has less effect on the superconducting

properties than Fe presumably because Au does not localize the holes on

itself. There are no obvious changes in the Cu k-edge and we conclude that

Au substitution has little or no effect on the chemical state of Cu or

oxygen.
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Figure 1.-Cu k-edge XANES for YBa2Cu307_ 6 (solid

curve) and Y_2Auo.3Au2.707_ 8 (dashed curve).

The energy reference was maintained using a Cu
foil.
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Figure 2.-Au L3 absorption edges for gold (dotted curve), a

monovalent gold compound - KAu(CN)2 (dashed curve),

trivalent gold oxide - Au203 (dot-dashed curve) and

YBa2Au0.3Au2.707. 6 (solid). A censlstant energy reference

was maintained by examining the L3 edge of a gold foil

simultaneously with these samples.



Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public reporting burden for this coflecilon of Information Is estimated to average I hour per response, including the time for revlewlng instrud|ons, searching existing data IM_Jfces,
gathering _ maJntJdnlng the data needed, and compteUng and review{ng the ccdlection of Information. Send comments regarding this burden estimate or sny other lulped of this
collection Of lrlfon'na_on, Including suggegrlions for reduc_g this burden, to Washington Hesdquadere Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1991 Technical Memorandum

4. TITLE AND SUBTITLE

Near-Edge Study of Gold-Substituted YBa2Cu307_ 8

6. AUTHOR(S)

Mark W. Ruckman and Aloysius F. Hepp

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135- 3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546- 0001

5. FUNDING NUMBERS

WU-506-41-11

II. PERFORMING ORGANIZATION
REPORT NUMBER

E-6509

!10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 105220

11. SUPPLEMENTARY NOTES

Mark W. Ruckman, Brookhaven National Laboratory, Physics Department, Upton, New York 11973-5000; Aloysius F.

Hepp, NASA Lewis Research Center. Responsible person, Aloysius F. Hepp, (216) 433-3835.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories 25 and 76

12b. DISTRIBUTION CODE

13. ABSTRACT (Maxlmum 2OOwords)

The valence of Cu and Au in YBa2Au0.3Cu2.7OT_swas investigated using x-ray absorption near-edge structure (XANES).

X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has

little effect on the oxidation state of the remaining copper. The Au L 3 edge develops a white line feature whose position

lies between that of trivalent gold oxide (Au203) and monovalent potassium gold cyanide (KAu(CN)2) and whose height

relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3-edge suggests that

fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.707_ _ than in trivalent gold oxide.

14. SUBJECT TERMS

Gold-substituted YBa2Cu307_8; XANES; Valence of gold; Copper

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
]0

16. PRICE CODE

A02

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102


